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ABSTRACT ,

This paper describes a one-dimensional model of
turbulent jet diffusion flames, which has been developed
for releases of gaseous fuels considering the presence of
non-uniform incident wind, the interaction with an engulfed
obstacle, and thermal radiation. It is based on a one-
dimensional formulation of the fluid dynamics equations
complemented with models for chemical reaction, thermal
radiation and an adaptation of the k-g-g closure method.
To formulate the one-dimensional model, the problem is
considered to be parabolic along the center line of the
flame and self-similar profiles in planes normal'to this line
are assumed. To evaluate the validity and usefulness of the
model, its results have been compared with those of a
three-dimensional model, developed by the authors, and
with available wind-tunnel and full-scale experimental
results, and a good agreement is fouad.

INTRODUCTION

Turbulent jet fires are present in many industrial
processes, either as a hazard or as a result of a controlled
relief of gas in some operational or emergency situations.
Itis of interest to know the charactefistics of the flame and
the heat transferred, either convective or radiative, to
surroundings objects or engulfed obstacles. To asses the
effect of these fires, mathematical models based on the
Navier-Stokes equations, complemented with some
appropriate models describing the combustion and a closure
procedure to model the turbulent transport terms, are
useful. Numerical models are generally based on finite-
difference approximations of the fluid dynamics equations

(Fairweather et al., 1992; Hernandez and Crespo, 1992),
which are fairly difficult and time consuming to solve.

The flow equations can be simplified if a jet center line
and self-similar profiies in planes normal to it can be
defined. Then, the partial differential equations may be
converted to ordinary differential equations, with the
distance along the center line as independent variable. The
problem is then simpler and the computer time is
substantially reduced, from hours to fractions of minutes.
This type of one-dimensional or integral model has been
used extensively by Escudier (1972), Fay (1973), Tamanini
(1981), Peters and Géttgens (1991), Cook (1991), and
Caulfield et al. (1993), among others. In this work, we
present a rigorous way to deduce the one-dimensional
equations, that, in our knowledge, has not previously been
formulated. A more detailed description of the derivation
of this mode!, UPMFIRE, can be found in -Servert (1993).
Fay (1973) proposed a model somehow similar to ours, but
it has a more complex interpretation and the definition of
the average quantities depends on the existence of an
ambient wind. UPMFIRE applies to situations in which
there is both ambijent wind with shear and no wind.

Whereas other models (Escudier, 1972, Cook, 1991;
Caulfield et al., 1993; Tamanini, 198 1) either assume top-
hat profiles-or sine-type profiles that end at a finite
distance from the center line, UPMFIRE can also be
applied using self-similar profiles that extend to infinity in .
the transverse direction.

The three-dimensional equations describing the flow
ficld are formulated assuming that the flow is parabolic
along the center line. The k-g-g model is used to close the
turbulent equations, and relations for the mixture fraction
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and its variance are formulated.

The combustion model is based on an infinitely-fast . -

'eaction mechanism and a prescrited shape for the
probability-density function of the muxture fraction. The
mass fractions of fuel, carbon dioxide and water vapor are
obtained as functions of the mixture fraction and its
variance, and the temperature is determined as a function
of these same variables and of the enthalpy. A separate
method, similar to the one proposed by Caulfield et-al:
(1993), is used to calculate the soot mass fraction.

Integrating the three-dimensional equations in cross
sections and applying an spatial average to the different
flow quantities, the one-dimensional eqiations are obtained.
If the turbulent diffusivities of all the variables are equal,
a single relationship between the average and maximum
values of the quantities is obtained that simplifies the
numerical calculation, in particular the calculation of the
source terms.

Further manipulation of both the cne-dimensional and
the three-dimensional equations leads to a generalization of

amanini's (1981) expression for the production term of the
.rbulent kinetic energy and of the variance of the mixture
fraction, so that it takes into account the cross-wind effect,
and its validity is extended to arbitrary spatial distributions.

The one-dimensional model has been modified to
include the effect of an engulfed obstacle, small in
comparison with the characteristic length of the flame, by
means of a finite jump in the flow conditions:

Finally, a comparison is made with wind-tunnel
experimental results (Duijm, 1993; Verheij and Duijm,
1991) and with full-scale measurements (Ott, 1991). The
model has also been validated with a three-dimensional
model (Herndndez and Crespo, 1952). In general, the
results seem to be in good agreement. and UPMFIRE can
be considered as a useful tool in risk assessment.

3-D GOVERNING EQUATIONS

The one-dimensional model will be derived from the
—Yavre-averaged, three-dimensional conservation equations
f mass, momentum, energy, mixture fraction, turbulent
kinetic energy, dissipation rate of the turbulent kinetic
energy and variance of the mixture fraction (Hernindez and
Crespo, 1992), which may be written in the general form

V. (v$-Ty=s, m

where ¢ can be equal to: 1, any component of the velocity,
¥, total enthalpy, h, mixture fraction, £, turbulent kinetic
energy, k, dissipation rate of the turbulent kinetic energy,

¢, or variance of the mixture fraction, g. In this equation,
p is the density and S, is the source term. The Favre
average is denoted by a tilde and the temporal average by
a dash. The diffusion vector (except for the velocity
components, for which some additional terms appear) is
expressed as

r,= 2vg @
Sy

where y, is the turbulent dynamic viscosity, and g, is the
turbulent Prandtl number for the variable §. The turbulent
viscosity is obtained from

2
n=C,pK ©)
. €

" where C,= 0.09.

The source terms include buoyancy effects in the
vertical momentum equation, thermal radiation in the
energy equation (in which gravity has been neglected and

_the Mach number is assumed to be low), and production

and dissipation terms in equations for k, € and g.
The model is completed with a perfect gas law and the
state equation for enthalpy.

COMBUSTION MODEL

To define the combustion model, the classical
hypothesis of one-step, irreversible reaction, represented by
[Fuel +r, Oxidizer — (1+r,) Products], fast chemistry and
equal diffusivities for all the species are made. This leads
to the classical conserved-scalar approach and to the well
known relation

58
Yr(é)" T‘:‘E’:n £> é,

Y (5)=0, ES &,

€Y

where Y is the fuel mass fraction and &, is the
stoichjometric mixture fraction.

From the instantaneous value, the Favre average is
obtained through

~ 1 |
RO e NG O
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Two predefined shapes for the probability-density

function, P(£), are used: a two-delta function and a beta

7\ function, whose parameters are expreused in terms of the

" mean and the variance of the mixture fraction. An

alternative approach is to correct the expression (4) applied

to the average mixture fraction to account for the
unmixedness due to the turbulence:

A Y -E
AR L TN Efi ©
. g

where J can either be estimated from (5) or from the
following correlation (Mudford and Bilger, 1984):

J=0.45 eXp[— lé_fl] )
g

The mass fractions of oxygen and products are

Y, = (r.?FJr ‘?o_)— E(r_+ ?o-) ®)

T (e 1)E-Y,) ©)

where r, is the stoichiometric ratio and the subscript a
represents ambient conditions.

The products are mainly H,0O and CO,, whose mass
fractions are obtained from the s'oichiometry. Other
products are assumed to have small mass fractions, and are
not relevant except for soot, which is considered because
it plays an important role in radiative processes. The soot
mass fraction calculation procedure is discussed latter.

Enthalpy and temperature are related by

dh=cdT+Qd¥, (10

If the specific heat at constant pressure, ¢, and the heat
of reaction, Q, are constant,

h=¢ T+ QY

P F

an

This relation is used to obtain temperature from
enthalpy and fuel mass fraction.

AMBIENT FLOW .
The ambient flow, where the jet diffuses, corresponds

to the surface layer of the atmospheric boundary layer. For
the case of neutral conditions, if the magnitudes change
only with the vertical distance to the ground, the only
velocity component is

v,=v, =2.5u’ log_z_ (12)

where u” is the friction velocity and z, the surface
roughness. In the model, a similar equation which retains
stability effects in the atmosphere by means of the Monin-
Obukhov length as a parameter can also be used (Servert,
1993).

The distributions of the turbulent kinetic energy and its

. dissipation rate are given by

(13)

The variations of density, pressure and enthalpy can be
easily obtained. In a first approximation, density and
enthalpy are assumed to be constant. Finally, the ambient
is considered to be free of fuel, so that £=0 and g =0.

It can be observed that the ambient flow satisfies the
general equation (1): '

V- (p,7.9,- I‘:_)= S, (14)

DEFINITION OF THE SPATIAL AVERAGES

The central hypothesis of 1-D models is the existence
of self-similar axisymmetric profiles for the dependent
variables of equation (1), such as

. - _ I_
$~9¢,= (o, dP.)%[RJ as)
where , satisfies J{u¢2nrdr= R, W, (0)=1

°

R and ¢, are the spatial distribution parameters, which are
functions of the coordinate along the fiame, and r is the
radial coordinate. In the initial sections, while the jet is
developing, no self-similarity exists. At the jet exit, the
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Figure 1. Control volume.

profile is usually a top-hat which relaxes downstream to a
more Gaussian-like profile. The hypothesis of self-

~~ similarity and axial symmetry are not strictly true due to
the cross-wind and buoyancy effects.

A typical difficulty of the one-dimensional models is
the divergence of the integrals defining the average values
when the flame perturbation extends to infinity. To avoid
this difficulty, we propose the following spatial-average
method:

{<f>- )= lim [Faf- o8 a6

where 1 is the velocity normal to the surface A. This
surface is perpendicular to the centzr line, and the average
value of the velocity component contained in A, <Ww>, is
equal to zero.

The mass flow rate, m, across A is defined by

- =lim (pii- p.v_cose)dA an
A A
~
where
th, = P20 (18)
. <p><ii>

and 0 is the angle that the normal to the surface A forms
with the horizontal plane.

The average density is defined using an equation of
state:

<pr= Do (19)

where p, is the ambient pressure, R, is the gas constant,,

and equation (16) is used to evaluate <T>, even though

temperature is not a8 dependent variable of equation (1).
The radius of the flame is

oo |om (20)
<p><ii>n

ONE-DIMENSIONAL CONSERVATION EQUATIONS
To obtain the one-dimensional conservation equations,

“the following procedure is used. First, the general equations

for the perturbed and unperturbed flows are subtracted

V- (p%- pT4-T,+T)=5,-5, @D

and integrated over the control volume shown in Fig. I,
which is limited by two cross-sections, infinitely close to
each other, and a lateral surface far enough from the
center-line, where ¢ tends to ¢,. Then, the result is
simplified using the parabolic hypothesis and assuming that
the difference between the perturbed and unperturbed
diffusion fluxes decrease with radial distance faster than A
1. as a consequence, the diffusion vector vanishes over all
the surfaces enclosing the control volume. Finally, the
definitions (16) to (20) are applied.

For the particular case of ¢ = 1, the mass conservation
equation is obtained,

LI (22)
ds
where
dm
m' = —S'- ‘l\imf(ﬁﬁl - p,v,cosB)dl (23)
—»eol

m,' is the entrainred mass per unit length and time. The
argument of the last integral tends to zero as A does;
hence, this term tends to a finite value.
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For ¢ different from 1,

R A

where the source term is

AS, =lim[(S.- 8.) dA
A ATL,[( o= S)) | ©5)

The first term in the r.h.s. of (24) represents the
entrainment of ¢,. The second and third terms represent the
source contribution. In equations (16), (17), (23) and (24),
the ambient values have been subtracted to make the
integrals converge; therefore, other terms appear in these
equations: mé,, m,, dm,/ds and rh,d¢,/ds, respectwely

The flame trajectory and angle © are given by

<i’( >
tan(0) = 3_’2( - o ds=@ied)? (6)

MASS ENTRAINMENT ASSUMPTIONS
To estimate the mass entrainment, two models are used.
In the first one,

. @n
/= 2nbj, <p ( o |<ii> - veosB |+ B !v_sinG |)
P, ,

where the factor (<p>/p)"?is due to Ricou and Spalding
(1961), and o = 0.057 and P = 0.5 in the present model.
The second one, due to Tamanini (1981), in which

m’=C_p, (28)

is based on the analytical solution for a jet obtained by
Schlichting (1968). In UPMFIRE, C,, is given the value 20,
whereas C, = 17 in Caulfield et al. (1993), who include
additional terms representing the entrainment due to the
wind component normal to the flame.

The turbulent viscosity is evaluaied using the classical
k-& method directly applied to the average values

<p>=C.< >_<_l_ci 29)

<g>

RELATIONSHIP BETWEEN THE AVERAGE VALUES AND
DISTRIBUTION PARAMETERS

A useful expression, relating spatial averaged values to
the spatial distribution parameters ¢, and R, can be
obtained by applying (16) to the dependent variables of
equation (1) and to the temperature (even though the
temperature does not satisfy the self-similar profiles deﬁned
by equation (15)).

If the function y, is equal for all the magnitudes, the
following relaticn holds for each ¢

<¢>- b, }i’ (30)
b2

where

| @~ p,v,cos0)¥dA
y=2 @)
| @~ p,v,cosB)dA
[+

In this equation, density is evaluated from temperature
using the state equation. Temperature is obtained from
equation (11) in terms of enthalpy and fuel mass fraction,
which is related to the mixture fraction and its variance
through equations (5) or (6). Servert (1993) has evaluated
y for a Gaussian shape of y, y = exp (-r*/R?, and has
shown that it mainly depends on the value of the mixture
fraction, and that it tends to 0.5 far downstream.
Equation (30) is always wvalid for the velocity
components and for all the dependent variables whose
distribution , is equal to that of the velocity components.

GENERAL FORMULATION OF THE SOURCE TERM
If the distribution profile y, were a top-hat, the source
term would be

AZ,=(8,~ S, )b’ (32)

However, the top-hat assumption is not always a good
approximation, particularly upstream of the flame due to
the behavior of the density and the temperature. To
overcome this difficulty, it is more convenient to write
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Y AE‘:= G.‘(S‘- S“)"b, (33)
' S‘n S‘(<¢‘>)

_where the average source term is defined by substituting
the local values of the variables by their averaged values.
The correction coefficient o, is expresszd as a function of
the averaged values through equation (30). For a top-hat,
o, would be equal to one. This coefficient usually depends
mainly on the spatial-averaged mixture fraction. )

In the vertical momentum equation, the buoyancy term
is

A% = lim J @,- PIgdA = (p,- <p>)gnb? (34)
Aod,

where g, represents the gravity acceleration. The coefficient
Oy, is close to one downstream of the flame tip, and larger
#4n one upstream.
Assuming that the gas is optically thin and that the
absorption coefficient is constant in the plane normal to the
center line, equation (33) can be written as follows:

AL = - o.hs,cb(d' >4- T:)2nb L)

where g, is the Boltzmann constant and €=2ba, with a
being the absorption coefficient. This equation has been
generalized to the case of a non-thin gas, and the flame is
considered locally as a cylindrical surface of radius b and
emissivity €. The Modak (1975) method ‘is used to
evaluate €,

For the turbulent kinetic energy, there are several source
terms. The mechanical production, AZ,, could be
estimated using a direct calculation (Calfield et al.,, 1993),

aﬁ 2
AL, =lim|p, [._.] 2mudr (36)
N aae, o\ Or

where the parabolic approximation is used. However, this
method fails for a top-hat profile. We have extended an
alternative procedure, originally suggested by Tamanini
(1981) for non-wind and top-hat profiles, to the case of
having a cross-wind and any distribution profile. Servert
(1993) shows that ’

O wiaS )

kl

plus some additional terms due to ambient flow variation.

The production of <k> by buoyancy is neglected by
some authors, or retained using a top-hat approximation.
We have kept this term and, due to its small contribution,
the correction coefficient has been considered equal to one.

For the dissipation rate of <k>, AX,, it can be shown
that the correction coefficient can be taken equal to one,

AL = - (<p><e>- pe)nb’ (38
We consider that the source terms in equation for <>

are equal to those in equation for <k> corrected by the
factor <e>/<k>. The classical constants of the k-& model

-are used: C,, = 1.44, C,, = 1.82, and C_, = 0.95.

The production of g, AZ,,, and AZ,, are of a similar
nature. It can be shown that

AL, = ot.plm"0<E>2 39)

The dissipation term in the thrce-dimensional equation
for g is used in the one-dimensional equation by direct
substitution of the averaged quantities, and the correction
coefficient is considered equal to one, so that

AL =-C <p><e> "8 np? (40)
3 3 <k>

where C = 0.8 is a constant of the k-e-g model.
Caulfield et al. (1993) have adapted a model of soot
production proposed by Fairweather et al. (1991) to the
one-dimensional case. We use a similar onc where soot
formation proceeds from the pyrolysis of acetylene through
nucleation and surface growth. Acetylene mass fraction is
evaluated from caiculations of CH /air laminar flames using
a strain rate of 60 s™*. There are two coupled equations: one
for the soot mass fraction, where the source terms
correspond to nucleation, surface growth and oxidation
processes, and another one for the particle number density,

where there are source terms for nucleation and
coagulation.
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JUMP IN FLOW CONDITIONS ACROSS AN OBSTACLE

The analysis of the interaction of turbulent diffusion
flames with an obstacle has different applications; i.e., the
estimation of the heat transferred to a pipe-line or a tank in
accidental situations. ‘

One-dimensional models are useful to evaluate the
interaction with an obstacle whose characteristic length is
much smaller than the flame size. We assume that the
obstacle is completely engulfed by the flame. The
interaction is represented by the drag force, D, and the
heat exchanged, Q;. Due to the small size of the obstacle,
we assume that the problem can still be considered as
parabolic, although this assumption fa:ls locally,

To estimate the drag force, we use

D= %<5><ﬁ>’;\rcp | @n.

here A.is the projected area of the obstacle over the plane
normal to the center line and Cpis a drag coefficient. The
heat exchanged between the flame and the obstacle has two
contributions: radiation, which is discussed latter, and
convection, calculated using

Q= ¥,(<T>~T L Nu “2)

where x, is the gas conductivity, T, the obstacle
temperature, L, the characteristic length of the obstacle
and Nu the Nusselt number.

" The jump in flow conditions across the object is
represented by source terms in the conservation equations:

A@h)=0 (43)

AGh<V >)= - D,c?se (44) |
A(th<?V >)= - D;sin @45)
Amh<k>)= - D,<ii> - 46)
A(mh<e>)= - D,<ﬁ>§§c“ @7

A(h<h>)= - Q, (48)
A(th<g>)=0 49)
Ah<E>)=0 S

It has been assumed that the energy dissipated by drag
is fully converted into turbulent kinetic energy. The
ciassical coefficient of the k-e-g model for the production
of g, C, is kept in (47) because the mechanism involved
is the same. Although the mixing enhancement due to the
presence of the obstacle decreases the value of g, this
effect is partially taken into account by the increase of ¢,
and thus no source term is included in equation (49).

RADIATION TO OBJECTS ENGULFED BY THE FLAME
To evaluate the heat exchanged by the flame to an
engulfed object surface, we adapt to this case the zoning
method (Hottel and Sarofim, 1967), considering an average
absorption coefficient for each section, so that

4 s

Q,= :(;(acf J cos.e;" exp(—'l[ .ads')dAchds

A s

63))

- -

where s is the distance from the flame volume element to
the surface element of the obstacle and 0, is the angle
between the normal to the surface and the line which joins
the volume and surface elements. We estimate the
absorption coefficient assuming a = log(l-g)/(2b). This
integral is evaluated for each cross section;, a detailed
description can be found in Servert (1993).

EXPERIMENTAL VALIDATION

The one-dimensional model UPMFIRE has been
validated by comparison with both wind-tunnel experiments
carried out by Duijm (1993) and Verheij and Duijm (1991)
and full-scale measurements carried out by Ott (1991). A
comparison with a three-dimensional model (Herndndez
and Crespo, 1992) has also been made.

In Fig. 2, a comparison between the temperature
contours in the vertical plane containing the burner axis
obtained with the one-dimensional model, the three-
dimensional model and wind-tunnel experimental results is
shown. This case corresponds to a release of methane
through a 5 mm nozzle at 250 mm over the ground, with
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Figure 2, Temperature contours.
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Figure 3. Radiation to a vertical cylinder.

a fuel exit velocity of 26.2 m/s and a wind speed of 1,52
m/s at 500 mm over the ground, with a ground roughness
of 3.9x10®° m. The agreement is good, although the
temperature contours are in general longer and thinner in
the one-dimensional model than in the three-dimensional
e.
In Fig. 3, experimental data are compared with the
results obtained from the model for the thermal radiation
flux emitted by the flame on an engulfed vertical cylinder.
The case corresponds to a release of methane through a 50
mm nozzle at 2.5 m over the ground, with a fuel exit
velocity of 82.94 m/s, and a wind speed of 2.74 m/s at 7
m over the ground and of 6.59 m/s at 18 m. The radiation
flux has been measured at the horizonta! slice’ of the
cylinder where the flux is maximum, and it has been
computed for slices at 3.05 m and 2.55 m over the ground,
located around the place where the measurements were
made. A good agreement between experiments and model
results is found. '
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